: = E ; ":’:'-"_-_
rpsaquaterra.colf}fd;u:; :
e

=t



Guidelines basic principle

m Guiding principle ok, but we need more
explicit and practical guidance

m Australian GW Model Guidelines (Barnett et
al, 2012) http://archive.nwc.gov.au/library/waterlines/82

s Guiding Principle 6.2: The net impacts of
future climate stresses (or changes in future
climate stresses) should be obtained from the
difference between predictions that include
climate change assumptions and a null
scenario that includes historic or current
climate assumptions.
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http://archive.nwc.gov.au/library/waterlines/82

Model Uncertainties Cascade

m Climate Change scenarios give Temperature
m Transform Temperature into Rainfall and EVT
# GW models need RCH input from RF & EVT

= WAVES designed/suited to such purpose

GG emissions
GCM temperature 4 g
Rainfall & EVT, scaling issues §=%

Recharge model (WAVES)

Groundwater model RCH & EVT "A? T




Premise: CC RCH to GW model

s WAVES designed/suited to provide RCH, but
= WAVES must be calibrated (not default), and

# GW model response to WAVES RCH must be
validated to history of GW system responses
of pre/post climate change signal/character

= Need to evaluate uncertainty for decisions
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Water Vegetation Energy and Solute Modelling (WAVES)
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Models Support Decisions

Decision makers are eager for certainty

Models/Modellers cannot provide certainty

Models affected by uncertainties in terms of:
m concepts/structure

m parameters

= calibration and prediction

Cannot predict future events with certainty
= all predictions will be wrong in some way
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GW Model Uncertainty

m Conceptual / Structural (critical)
= physical framework; hydrological processes
= most important; recent studies confirm
= structural uncertainty cannot be quantified

m Calibration
» GW models calibrate ratio of thruflow/Kh

® hon-unigueness; constrain with
measurements, especially flow volumes
(RCH?); include hydrological variability

= Trad. or PU sensitivity/uncertainty methods

m Parameterisation (ask John Doherty)
= Predictive Uncertainty (www.pesthomepage.org)
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http://www.pesthomepage.org/

Structural/Conceptual Uncertainty

s Due to simplification of complex reality
= Multiple model conceptualisations helpful

m Ye et al, Yucca Mtn; Ground Water, vol.48/5, 2010
m (5XRCH)*(5xGeology) = 25 model realisations
s Parametric uncertainty using Monte Carlo
s Structural error uses 2 model averaging methods
m Structural: major effect on predictive uncertainty
s Calibration observations do not discriminate model

m Eastern Snake (www.idwr.idaho.gov)

s Consensus approach with all parties involved In
model development, from concepts to scenarios

= “social approach” to address model uncertainty
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Figure A1 - Transient Model Recharge Zones
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GW model with WAVES RCH
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Pre-TasSY: |

DPIW
model .
developed: = L 78806004
rainfall
recharge . o070
— " B - 2532004
10%_20% . - = 3940004
of annual
rainfall, - T .
with Spatla 1.313e-004
variability I

for rainfall
Isohyets,
geology anc
land use




WAVES benchmarking

s DPIW models: assumed recharge at 10-20%
of rainfall isohyet zones; peer reviewed (Ray
Evans); established GW model parameters,
“cannot change” (no predictive uncertainty)

m TasSY (2009-10): apply WAVES recharge to
Wesley Vale model (has most bore data)

s WAVES RCH 10%-50% of DPIW rates (even
after adjusting WAVES parameters)

s WAVES decreasing trend with recent time

s But no definitive evidence of long term trend
downwards in measured water table levels

m Scaled WAVES to match traditional RCH mean
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TasSY — WAVES early trials
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TasSY — WAVES final v3 scaled

(a) DPIPWE Modflow model

(Aquaterra/REM, 2009)
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TasSY — model calibration

(g) Lloyd’'s &
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TasSY — model predictions

Despite data/model/climate/demand uncertainties, an adaptive water

resource mgt objective of further irrig & forestry development is achievable
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Premise: PU4CC

m Predictive Uncertainty (PU) approach required
for climate change (CC) scenarios (PU4CC)

historical & climate change RCH dataset (WAVES)
multiple GW model parameter sets (PEST-PU)

all equally calibrated to pre- and post-climate
change hydrological analogues (addresses non-
uniqueness)

demonstrate predictive skill to a variable climate

Predictive Uncertainty scenarios to provide
Information for decision making

x What timeframe to calibrate/benchmark?

17
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Premise: PU4CC

x GW model validated with WAVES RCH:

m 1961-1990 pre-climate change processes
m 1991-2011 climate change/variability processes

s WMO: “normal period” 1961-1990

B WASY: 19/74-2005 (excludes wet pre-1970s in WA)

B NASY: 1930-2007 (captures variability, inc wet recent)
B SA DoW 2011: 1961-2010 (captures variability)
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