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Research Context 

• Recharge: fundamental to understand for water 

resources management and aquifer vulnerability 

• Now easy to estimate with remote sensing data 

and established modelling approaches even for 

‘data sparse’ areas 

• But, often don’t have the right data to evaluate the 

estimates or to choose between models 

• Recharge processes poorly understood & 

constrained in water scarce areas e.g. indirect 

recharge (most semi-arid to arid areas) or lateritic 

soils (8% of Earth land surface and much of SSA) 

• GWL monitoring records potentially offer enormous 

insights, but getting at recharge can be tricky… 

 

 

 

 
 

 

 



The Problem 

• Water Table Fluctuation (WTF) technique (with normal caveats): 

 

 
 

q = recharge rate 

D = net groundwater 

 drainage rate 

h = head 

t = time 

Sy = specific yield 
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• D is unknown or assumed hard to estimate (so too is Sy but that’s another story...) 

• Can we relate D to aquifer parameters to create a time series 

method for smoothly varying WTs? 

 



Analytical solution: (e.g. Erskine 1997) 

 

 

 

With: 

Linearised Boussinesq equation: 

Theory for an ‘Ideal’ Aquifer 
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Thus,           is a reasonable approx. if T/S and x/L not too high 

                                                 

  

 

How does D vary in time and space? 
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But, amplitude of D:                       is small for much of many aquifers 
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Time series equation for recharge 
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• Can develop an equivalent equation for the non-linearised case 

• The analysis holds true for non-sinusoidal recharge and for a 

range of other non-ideal conditions (tested with numerical models) 

• Beware - D has a complex relationship with h and may be 

inversely proportional to h in some cases (contrary to common 

assumptions) 

  

 

qa 

aqD 



Case study from Shropshire, UK 

• Geometry appropriate. 

Best estimates of L = 5 km, 

Sy = 0.1, T = 200 m2/d. 

 

• Monitoring wells 

sufficiently far from 

drainage outlet A/D < 

0.005 

 



Results for Shropshire, UK 

2042: 110 mm/a 2086: 127 mm/a 

EA:  114 mm/a 



NE Uganda: Location/Geological Context 

Study Area 

MacDonald et al (2005) 



Topography & Drainage 

• Depth to bedrock variable: 3 to 18 m 

• Regolith: sandy clay/laterite 



Climate trends 
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Annual total rainfall and annual average air temperature derived from CRU2.1 data. 



Groundwater Level Monitoring 



Groundwater and Meteorological Data 

RF Average = 1300 mm/a 

PEt Average = 1900 mm/a 



Soil Moisture Balance Model 

• Simple ‘Penman Grindley’ type in VBA 

• Daily calculations using RF and PE inputs 

• Assumed runoff 0 to 5%, related to SMD/intensity 

• Monthly variable C = 43-76 mm, D = 74-127 mm 

• Gives ‘potential’ recharge 

 

 

1-D Unsaturated Flow Model - HYDRUS 

• Assumes uniform flow governed by Richards 

Equation 

• Atmospheric boundary condition with surface 

run-off 

• van Genuchten parameters from Rosetta for a 

range of soil types 

• Daily stress periods using RF and PE inputs 

• Feddes model for crop transpiration 

• Estimates ‘actual’ recharge 



Uganda 

Results 
10 year average recharge (mm/a) 

WTF = 59 (T=5 m2/d, S=1.4%) to 236 (T=20 m2/d, S=5.5%)  

SMBM = 164 (5%runoff) to 231 (no runoff, reduced C & D) 

Hydrus = 246 (sandy clay loam) 



Or, a very simple (but effective) forward model 
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Results & Implications 

• Rainfall causes rapid WT 
responses (>5 m depth) 

• Recharge occurs without SMD 
having to be overcome 

i.e. Preferential flow dominates the 
recharge response but more work 
needed to unravel processes 

• Groundwater recharge not currently sensitive to changes in PE (temperature) 
but very sensitive to changes in rainfall amount (& intensity??) 

• SMBMs and uniform flow models not good tools in such soils despite their 
convenience 

 • Emphasises need for hydraulic corroboration of recharge modelling 
techniques – or, if not, serious consideration of model structural error 

• Recharge relatively high - changes to absolute values of recharge perhaps 
not as important as access/demographic pressures unless groundwater 
irrigation increases 

• Need to know more about preferential flow processes to predict susceptibility 
of recharge e.g. to landuse change 

 



Uganda Conclusions 

• Utility of a simple scoping model for testing 
the relationship between feasible recharge 
models and aquifer parameters 

• Significance of preferential flow in lateritic 
soils: 
- Recharge less sensitive, directly, to changes in PE 

than may have been expected 

- Uniform flow models and SMBMs not good here 

- Fast pathways for contaminants 

• Importance of sustained, high temporal 
resolution, groundwater level monitoring 
records to inform process understanding and 
trends 

• More work needed on recharge in lateritic 
soils 

 



Overall Conclusions 

• Analytical simplification gives powerful insight into the 

relationships between recharge, aquifer parameters and WTFs 

• For many parts of many aquifers ‘net groundwater drainage = 

average recharge’ is a good first assumption (for low GWABS) 

• Method links aquifer parameters (T, L and Sy) to recharge thus 

reducing uncertainties if these are relatively well constrained 

• Can also use the analysis to forward model groundwater level 

fluctuations if recharge can be estimated by other means – 

useful for ‘conceptualisation’ stage of a water resources 

project 

• Limitations for catchments with strong spatial trends in aquifer 

properties, very dynamic groundwater abstractions and/or 

dominated by indirect recharge 

• Corroboration using multiple recharge estimates still 

recommended 

 

 



Any questions or 

suggestions? 
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