

Henry Kerfoot

Principal Geochemist URS Australia Pty Ltd, Melbourne +61 3 8699 7550; henry.kerfoot@urs.com

Melbourne IAH, 5 March 2013

US – Late 1980s

- Researchers note that volatile organic compounds (VOCs) are the most common groundwater constituent at landfills
- US landfill groundwater monitoring requirements modified to include VOCs as 'indicator parameters', due to frequency and mobility
- VOCs in groundwater from landfill gas (LFG) had not been envisioned
- Due to much lower cost for gas control than leachate control, differentiating gas from leachate important.

- Case Study 1 Use of radioisotopes to assess LFG impacts on groundwater
 (http://www.ncbi.nlm.nih.gov/pubmed/14710929) and inorganic effects of LFG on groundwater
 (http://info.ngwa.org/gwol/pdf/040278119.pdf)
- Case Study 2 Comparison of gas and aqueous data to assess the direction of partitioning in a monitoring well; In-well LFG effects

(http://www.ncbi.nlm.nih.gov/pubmed/15736343)

- Within-well vs Out-of-well LFG impacts
- Time to cleanup

- Case Study 1 Use of radioisotopes to assess LFG impacts and inorganic effects of LFG on groundwater
- Case Study 2 Comparison of gas and aqueous data to assess the direction of partitioning in a bore
- Within-well vs Out-of-well LFG impacts
- Time to cleanup

Case Study 1: MSW Landfill: LA Area

- Spreading grounds (MAR) upgradient
- Quarry downgradient
- Partially lined, partially unlined
- Persistent low-level VOC detections DCDFM, TCE upgradient and cross-gradient...
- Others -- GW and gas VOCs 'at equilibrium'
- Permit renewal at stake

Isotope evaluation performed:

- A. Dissolved inorganic carbon (Carbonates) from LFG CO₂ or leachate alkalinity -- modern, high ¹⁴C level vs. background carbonates
- B. Leachate water likely has elevated tritium (³H)

Elevated ¹⁴C and tritium -> Leachate;

Elevated ¹⁴C only -> LFG

Evaluated changes in inorganic constituents during and after LFG effects on groundwater

Parameters Evaluated:

- Alkalinity
- TDS
- Fe and Mn
- Na, SO4 and Cl
- Ca and Mg

Calcium and Magnesium and Alkalinity

LFG Can Cause Changes in Non-Volatile Constituents

- Alkalinity
- Ca and Mg
- Manganese
- No Effect on Sodium, Chloride

- Case Study 1 Use of radioisotopes to assess LFG impacts and inorganic effects of LFG on groundwater
- Case Study 2 Comparison of gas and aqueous data to assess the direction of partitioning in a bore
- Within-well vs Out-of-well LFG impacts
- Time to cleanup

- Operating unlined landfill
- New low-permeability cap and landfill gas extraction system (LFGCCS) installed
- Before LFGCCS operation began, detections of volatile organic compounds cross-gradient and upgradient from waste
- Regulators required explanation for detections

Volatile Organic Compounds Detected In Ground-Water Samples

Compound	Henry's Law Coefficient	OW-08 (ug/L)	OW-10 (ug/L)	OW-13 (ug/L)	OW-15 (ug/L)
<u>cis</u> -1,2-Dichlchloroethene	0.31	ND(10) ^a	10	ND(10)	10
1,1-Dichloroethane	0.23	ND(5)*	7	ND(5)	10
Dichloromethane	0.11	ND(5)	ND(5)	ND(5)	8
Trichloroethene	0.37	ND(1.4)	2	ND(1.4)	3
Tetrachloroethene	0.93	ND(1.1)	3	ND(1.1)	5

In-Well Gas Effects

In-Well Gas Effects

Evaluating gas/water equilibrium by comparing gas and aqueous concentrations

EQUILIBRIUM (No net phase transfer):

 $C_g = H C_w$

Gas-to-Water Transfer:

$$C_g > H C_w$$

Water-to-Gas Transfer:

$$C_g < H C_w$$

Table 3. Gas Concentrations(ng/cm³) and Evaluation of Gas/Water Equilibrium of Volatile Organic Compounds^a

Well	<u>cis</u> -1,2-DCE (H=0.31)		1,1 (H=	-DCA =0.23)	MeCl ₂ (H=0.11)		TCE (H=0.37)		PCE (H=0.93)	
		HC C _s		HC Cg		HC C _s		HC C _g		HC C
OW-08		NW ^c		NW ^c		NG⁴		NW ^c		NW ^c
OW-10		0.03		NG ^d		NG		0.8		0.19
OW-13		NG		NG ^d		NG		NG⁴		NA
OW-15		0.32		0.77		0.35		0.41		1.4

^a Gas concentrations (C_g) in ng/cm³; HC_w/C_g dimensionless ^b Non-detect; See Methods and Materials for detection limits

^c Entries of NW represent non-detectable water concentrations with detectable gas concentrations

^d Entries of NG represent non-detectable gas concentrations

In-Well Gas Effects

Compound	OW-08	OW-10	OW-13	OW-15
Dichlorodifluoromethane	1.2	1.4	ND(0.003)*	ND(0.002)*
1,2-Dichloro-1,1,2,2- Tetra fluoroethane	0.42	ND(0.0009)	ND(0.007)*	0.29
Vinyl Chloride	1.9	0.69	ND(0.002)*	2.3
Chloroethane	1.6	ND(0.0008)*	ND(0.003)*	3.2
Trichlorofluoromethane	0.007	0.31	ND(0.002) ^a	0.90
1,1,2-Trichloro-1,2,2- trifluoroethane	0.09	ND(0.001)*	ND(0.005)*	0.23
trans-1,2-Dichloroethene	ND(0.005)*	ND(0.001)*	ND(0.005)*	0.17
1,1-Dichloroethene	ND(0.003)*	ND(0.005)*	ND(0.003)*	0.10
Chloroform	ND(0.003)*	ND(0.0006)*	ND(0.003) ^a	0.12
Benzene	1.2	0.35	ND(0.003)*	2.0
1,2-Dichloroethane	ND(0.003)*	ND(0.005)*	ND(0.003) ^a	0.09
Toluene	0.11	1.0	0.079	3.4
Chlorobenzene	. ND(0.004)*	ND(0.008)*	ND(0.004) ^a	0.12
Ethylbenzene	ND(0.003)*	0.35	ND(0.004) ^a	2.1
Total Xylenes	1.1	0.61	0.065	7.8

Table 4.Concentrations (ng/cm³) of Compounds Detected in Monitoring-WellHeadspace Gases but Absent from all Ground-Water Samples

^aND = Not Detected; Detection limit in ng/cm³ in parentheses.

- Case Study 1 Use of radioisotopes to assess LFG impacts and inorganic effects of LFG on groundwater
- Case Study 2 Comparison of gas and aqueous data to assess the direction of partitioning in a bore
- Within-well vs Out-of-well LFG impacts
- Time to cleanup

Timeframe of Corrective Actions for LFG Effects

In-Well Effects

 In-well LFG effects: When gas/water contact is limited to within the bore

Out-of-Well Effects

 Out-of-well LFG effects: When gas/water contact occurs outside (upgradient) of the bore

Timeframe of Corrective Actions for LFG Effects

In-Well Effects

- Can be due to well construction, stratigraphy -- Gas/water contact area (in well) known
- Corrective action can potentially be targeted to intercept transport pathway
- Due to limited gas/water contact area, MNA possible

Out-of-Well Effects

- A potentially dispersed and unknown gas/water contact area (possibly beneath waste)
- Enhanced landfill gas collection (source control) best approach

- Case Study 1 Use of radioisotopes to assess LFG impacts and inorganic effects of LFG on groundwater
- Case Study 2 Comparison of gas and aqueous data to assess the direction of partitioning in a bore
- Within-well vs Out-of-well LFG impacts
- Time to cleanup

Time to Re-Establish Compliance Influenced by:

- GW Concentrations;
- GW Flow Velocity;
- Vadose Zone Properties;
- Residuals of LFG; and
- Others

- Very Rapid GW Flow
- Deep Vadose Zone
- Highly Variable Concentrations During Time of LFG Effects
- Approximately 48 Months for Recovery to ND in one case

In-Well Gas Effects

Thank you

Henry Kerfoot Principal Geochemist URS Australia Pty Ltd, Melbourne +61 3 8699 7550; henry.kerfoot@urs.com