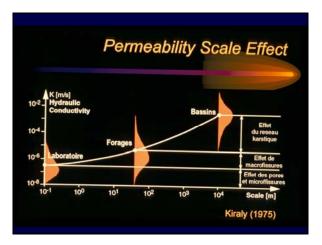
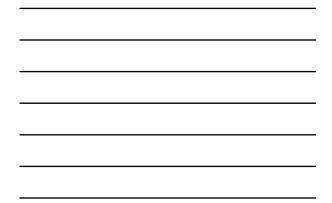
Evaluating the effects of fracture roughness on fluid flow and solute transport: Is upscaling possible?

John M. Sharp, Jr., Richard A. Ketcham, and Donald T. Slottke, Mishal Al-Johar

> Department of Geological Sciences Jackson School of Geosciences The University of Texas Austin, Texas, USA

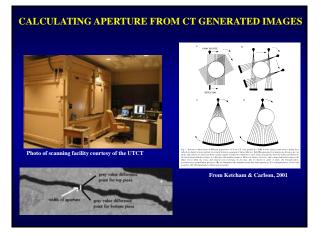

Importance?


• Flow and transport in many or, perhaps, most rocks is fracture controlled.

- Black's law
- Scaling, if possible, could allow us to predict key hydraulic properties at larger spatial and temporal scales than we can measure readily.

BLACK'S LAW

When dealing with fractured systems, we find that contaminants appear at places we don't expect and they appear faster than we had predicted.


FRACTURE CHARACTERIZATION


- Orientation (strike and dip, if planar)
- Spacing or density [L⁻¹]
- Aperture
- Roughness (asperities)
- Channeling
- Connectivity
- Skin properties

Flow and transport in fractures

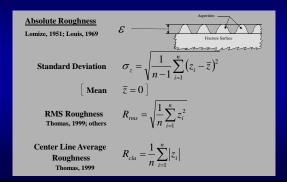
- Laboratory tests of flow
- Catscans (X-ray computed tomography) of roughness
- Evaluation of aperture and roughness statistics and scaling
- Evaluation of channeling

Samples tested to date include granites, sandstones, tuffs, and carbonates.

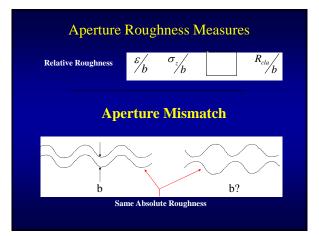
FLOW IN A SINGLE FRACTURE

- Cubic law
- Modified cubic law (e.g., Lomize)
- Channelized model of flow
- Stress dependent models

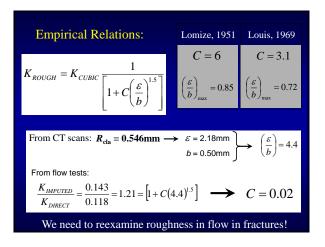
LOMIZE'S MODIFIED CUBIC LAW

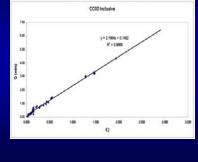

$$Q = \frac{1}{f} \frac{b^3 \rho_w g}{12\mu} (\nabla h)^c$$

APERTURE?

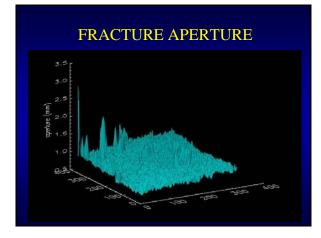

- Arithmetic mean
- Geometric mean
- Harmonic mean
- Hydraulic
- Transport

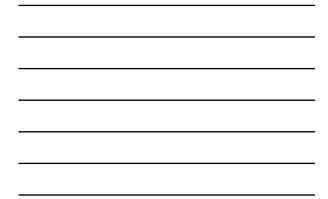
Berkowitz, Ge, Mourzenko?


There are many methods used to calculate surface roughness

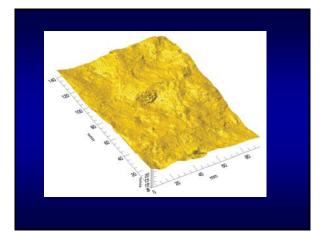


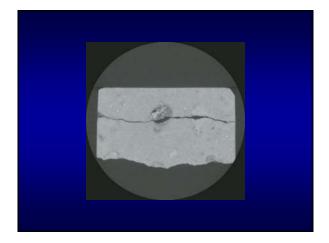
MEASURING FLOW RATES

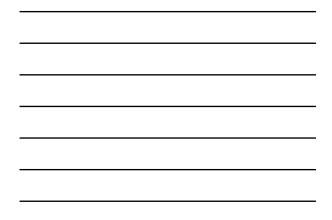


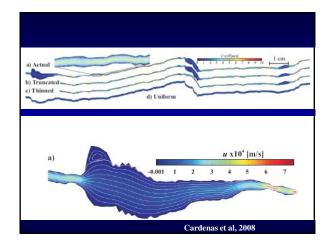


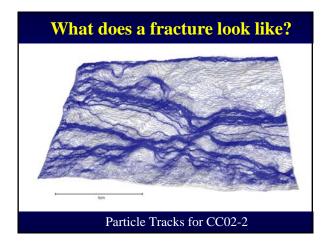
Plotting discharge versus hydraulic gradient, we expect a "rounding over" effect as inertial forces begin to dominate. In this set of tests, the flattening has yet to appear at even relatively high gradients.

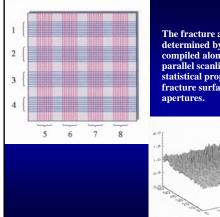


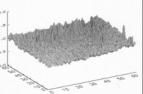

Modeling and Flow Laws

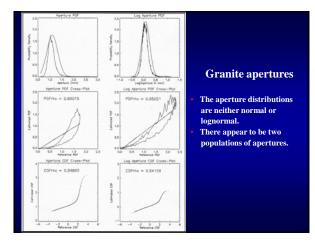

- Local cubic law
- Smooth walls
- Parallel plates
- No slip
- No turbulence

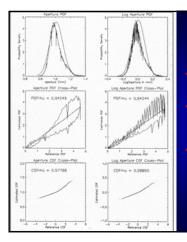

What does a fracture look like?



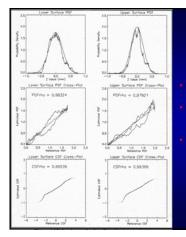






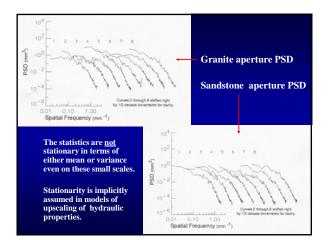


The fracture aperture determined by CT were compiled along 8 sets of 9 parallel scanlines to examine statistical properties of the fracture surfaces and apertures.



Sandstone aperture

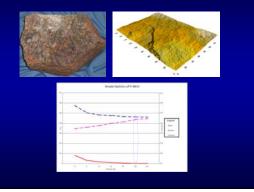
The aperture distributions are neither normal or lognormal.
There appears to be some censoring and truncation effects and a kink. Are there two distributions?
A binning artifact is seen in the log aperture data .

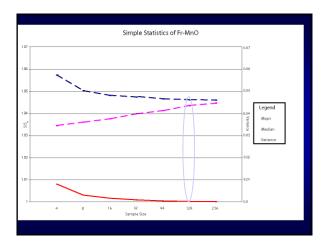


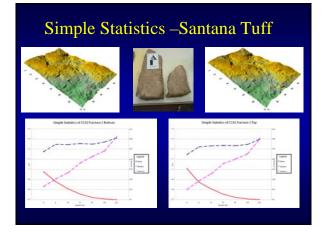
Sandstone fracture roughness

Roughness distributions are close to normal. There appears to be some censoring and truncation effects and a kink . The statistics of the fracture surfaces are different than those of the aperture.

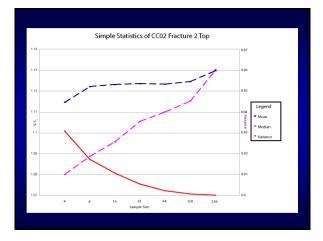
Ensemble	Min	Max	Mean	Std. Dev.	GeoMean	HarMea	n		
Apert_1	0.8177	1.1611	0.9741	0.0670	0.9718	0.9695			
Apert_2	0.8387	1.2517	0.9956	0.0821	0.9924	0.9892	92		
Apert_3	0.8661	1.2713	1.0050	0.0795 1.0020 0.9992					
Apert_4	0.8896	1.2587	1.0509	0.0700	1.0485	1.0460			
Apert_5	0.8474	1.1991	0.9806	0.0652	0.9784	0.9763			
Apert_6	0.8725	1.2077	1.0110	0.0641	1.0091	1.0071		andston	e data
Apert_7	0.8143	1.2779	1.0003	0.0920	0.9962	0.9922			
Apert_8	0.8816	1.3498	1.0831	0.0989	1.0786	1.0742			
Min	0.8143	1.1611	0.9741	0.0641	0.9718	0.9695			
Max	0.8896	1.3498	1.0831	0.0989	1.0786	1.0742			
Mean	0.8535	1.2472	1.0126	0.0774	1.0096	1.0067			
aperti	ire was	ensembl set at 1.							
aperti	ire was	set at 1.	0 mm	by scre	w adjus	tment	Ar	e the da	ita
	ire was	set at 1.	0 mm	by screw	w adjus Mea	tment.	Ar	e the da	ta HarMear
aperti	ire was	Set at 1.	0 mm Min 0.738	by screv Max 4 1.458	w adjus Mea	tment. n Std.	Ar Dev. 220	e the da GeoMean	HarMear 0.9968
aperti	ire was	Ensemble Apert_ Apert_2	0 mm Min 0.738 2 0.756	by screv Max 4 1.458 6 1.631	w adjus Mea 0 1.010 0 1.085	tment. n Std. 19 0.1 56 0.1	Dev. 220 661	e the da GeoMean 1.0036 1.0738	ta HarMear 0.9968 1.0628
aperti	ire was	Ensemble Apert_ Apert_	0 mm Min 0.738- 2 0.756 3 0.782	Max 4 1.458 5 1.631 6 1.444	w adjus Mea 0 1.010 0 1.085 2 1.093	tment. n Std. 19 0.1 16 0.1 11 0.1	Dev. 220 661 184	e the da GeoMean 1.0036 1.0738 1.0867	ta HarMea 0.9968 1.0628 1.0802
aperti statio	ire was nary?	Ensemble Apert_ Apert_ Apert_ Apert_	0 mm Min 0.738 0.756 0.756 0.782 0.826	Max 4 1.458 5 1.631 6 1.444 2 2.198	w adjus Mea Mea 0 1.010 0 1.085 1.093 12 1.205	ment. n Std. 19 0.1 16 0.1 131 0.1 11 0.2	Dev. 220 661 184 577	GeoMean 1.0036 1.0738 1.0867 1.1864	ta HarMear 0.9968 1.0628 1.0802 1.1683
aperti	ire was nary?	Ensemble Apert_ Apert_ Apert_ Apert_ Apert_	Min 0.738- 0.756- 0.756- 0.782- 0.782- 0.826- 0.826- 0.826- 0.826-	Max 4 1.458 5 1.631 6 1.444 2 2.198 9 1.674	w adjus Mea 0 1.010 0 1.085 1.2 1.093 1.2 1.205 7 1.096	n Std. 09 0.1 56 0.1 31 0.1 91 0.2 58 0.1	Dev. 220 661 184 577 770	ce the da GeoMean 1.0036 1.0738 1.0867 1.1864 1.0836	ta HarMear 0.9968 1.0628 1.0802 1.1683 1.0719
aperti statio	ire was nary?	Set at 1.	0 mm Min 0.738- 2 0.756 3 0.782 4 0.826 5 0.823 5 0.823 5 0.788	Max 4 1.458 5 1.631 8 1.444 2 2.198 9 1.674 0 1.400	w adjus Mea 10 1.010 0 1.085 12 1.093 12 1.205 17 1.096 13 1.041	n Std. 09 0.1 36 0.1 31 0.1 34 0.1 38 0.1 14 0.1	Dev. 220 661 184 577 770 153	e the da GeoMean 1.0036 1.0738 1.0867 1.1864 1.0836 1.0351	ta HarMear 0.9968 1.0628 1.0802 1.1683 1.0719 1.0290
aperti statio	ire was nary?	Set at 1.	0 mm Min 0.738- 2 0.756 3 0.782 4 0.826 5 0.823 5 0.823 5 0.823 5 0.823 6 0.788 7 0.855	Max 4 1.458 5 1.631 6 1.444 2 2.198 9 1.674 0 1.400 7 1.425	w adjus Mea 0 1.010 0 1.085 12 1.093 12 1.209 13 1.041 14 1.095	n Std. 09 0.1 36 0.1 31 0.1 34 0.1 35 0.1 36 0.1 37 0.2 38 0.1 14 0.1 36 0.1	Dev. 220 661 184 577 770 153 134	e the da GeoMean 1.0036 1.0738 1.0867 1.1864 1.0836 1.0351 1.0896	HarMean 0.9968 1.0628 1.0802 1.1683 1.0719 1.0290 1.0838
aperti statio	ire was nary?	Set at 1.	Min 0.738 2.0.756 3.0.782 4.0.826 5.0.823 8.0.788 7.0.855 8.0.825	Max 4 1.458 5 1.631 6 1.444 2 2.198 9 1.674 0 1.400 7 1.425 2 2.193	Mea 0 1.010 0 1.085 12 1.093 12 1.209 13 1.041 14 1.095 13 1.165	n Std. 09 0.1 36 0.1 37 0.1 38 0.1 38 0.1 36 0.1 37 0.2 38 0.1 36 0.1 37 0.2 38 0.1 36 0.1 36 0.1 37 0.2	Dev. 220 661 184 577 770 153 134 397	e the da GeoMean 1.0036 1.0738 1.0867 1.1864 1.0836 1.0351 1.0896 1.1436	ta HarMear 0.9968 1.0628 1.0802 1.1683 1.0719 1.0290 1.0838 1.1268
aperti statio	ire was nary?	Set at 1.	Min 0.738 2 0.756 3 0.782 4 0.826 5 0.823 8 0.788 7 0.855 8 0.826 7 0.855 8 0.825 1 0.738	Max 4 1.458 5 1.631 6 1.444 2 2.198 9 1.674 0 1.400 7 1.425 2 2.193 4 1.400	Mea 0 1.010 0 1.086 12 1.093 12 1.093 12 1.093 13 1.044 14 1.096 13 1.165 13 1.010	n Std. 09 0.1 56 0.1 31 0.1 34 0.2 58 0.1 14 0.1 56 0.1 56 0.1 56 0.1 56 0.1 56 0.1 56 0.1 54 0.2 09 0.1	Dev. 220 661 184 577 770 153 134 397 134	GeoMean 1.0036 1.0738 1.0867 1.1864 1.0836 1.0836 1.0351 1.0896 1.1436 1.0036	ta HarMear 0.9968 1.0628 1.0802 1.1683 1.0719 1.0290 1.0838 1.1268 0.9968
aperti statio	ire was nary?	Set at 1.	Min 0.738- 2 0.756- 3 0.782- 4 0.826- 5 0.826- 6 0.788- 7 0.855- 8 0.825- 1 0.738- 2 0.8255- 1 0.738- 2 0.855-	Max 4 1.458 5 1.631 6 1.631 8 1.444 2 2.198 9 1.674 0 1.400 7 1.425 2 2.193 4 1.400 7 2.198	Mea 0 1.010 0 1.085 12 1.093 12 1.094 13 1.044 14 1.094 13 1.165 13 1.010 13 1.010 13 1.010 13 1.010 14 1.094	n Std. 99 0.1 366 0.1 311 0.1 328 0.1 34 0.1 56 0.1 36 0.1 37 0.2 38 0.1 34 0.1 56 0.1 54 0.2 09 0.1 01 0.2	Dev. 220 661 184 577 770 153 134 397	e the da GeoMean 1.0036 1.0738 1.0867 1.1864 1.0836 1.0351 1.0896 1.1436	ta HarMear 0.9968 1.0628 1.0802 1.1683 1.0719 1.0290 1.0838 1.1268

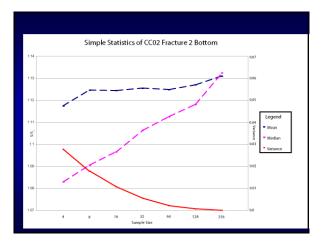


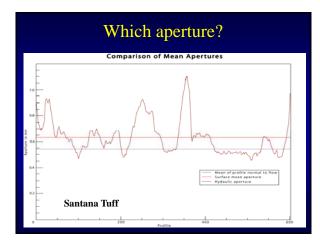



• Let's increase the sample size and scanning intensity

Simple statistics - granite sample







Conclusions

- The widely-held assumption that the cubic law is a fair approximation for laminar flow through rough rock fractures.
- Channeling of flow occurs even at small scales.
- Roughness is important and empirical equations for handling roughness do not appear adequate.
 - The empirical correction factors of Lomize and Louis presume near-total <u>mis</u>match between the surfaces and a relative roughness < 1.
 - Real rock fractures commonly have a relative roughness
 1. In fact, the asperities can be greater than the aperture.

Conclusions

- Aperture distributions may not match surface roughness distributions
- Aperture means and variances are not stationary at small scales in granite and sandstone samples with very complete data sets (2304 points).
- At a scale of 4-9 cm², an 0.25 mm point spacing, roughness stationarity was approached.
- The 2-D geometric mean is the best estimate of the hydraulic aperture.*

Conclusions

- Upscaling of fracture hydraulic aperture is still an open question.
- Single point or single scanline measurements of aperture should be treated with caution in predicting fluid flow and transport within fractures.
- Upscaling of transport properties is probably not yet possible.

Acknowledgments

- The University of Texas Geology Foundation
- National Science Foundation
- Geological Society of America
- Texas Cold Spring Granite Co.
- Keystone Granite Co.
- Clark Thompson, Wendy Robertson, Terence Garner, Thandar Phyu, Neville Robinson, Kitty Milliken, Jennie Bourne, Rowl Twidale, Frank Roberts, Nedra Bonal, Vince Tidwell, & Tom Lowry

Future and ongoing work

(assistance needed!)

- Conduct quantitative analyses of skin properties in crystalline rocks and compare data to: Rock type Climate
 Consider the effects of:

 - Channeling
- Fracture roughness Density-driven flow
 Tracer tests in fractures with materials of differing sorptivity.