

Reviewing Water Resource Impacts of Unconventional Gas Development

Margaret Shanafield, Peter Cook, Craig Simmons

National Centre for Groundwater Research and Training and School of the Environment, Flinders University

National Water Commission ustralian Research Counci

SOUTH AUSTRALIAN GROUNDWATER FORUM – July 2015

Prevalence of Unconventional Gas Resources in Australia

Basins with tight gas and shale gas resource potential and gas infrastructure: Source: Geoscience Australia and BREE, 2012, Australian Gas Resource Assessment 2012

Valid concerns vs. public hysteria

Table 4.2: Key risks for hydraulic fracturing and worst case frequency

# 1	Spill (20,600 litres) of a transport load of water without chemicals [1 in 50,000].
# 2	Spill (1,890 litres) of concentrated liquid biocide or inhibitor [1 in 4.5 million].
# 3	Spill (227 kg) of dry additive [1 in 4.5 million].
# 4	Spill (1,135 litres) of diesel from ruptured saddle tank on truck (road wreck) [1 in 5100].
# 5	Spill (13,250 litres) of fuel from standard field location refueler (road wreck) [1 in 1 million].
# 6	Spill (80,000 litres) of well-site water (salt/fresh) storage tank – no additives [1 in 1000].
# 7	Spill (190 litres) of water treated for bacteria control [1 in 10,000].
# 8	Spill (190 litres) of diesel while refuelling pumpers [1 in 10,000].
# 9	Spill (80,000 litres) of stored frack water backflow containing chemicals [1 in 1000].
# 10	Frack ruptures surface casing at exact depth of fresh water sand [1 in 100,000].
# 11	Frack water cooling pulls tubing out of packer, frac fluid in sealed annulus [1 in 1000].
# 12	Frack opens mud channel in cement on well less than 2000 feet deep [1 in 1000].
# 13	Frack opens mud channel in cement on well greater than 2000 feet deep [1 in 1000].
# 14	Frack intersects another frac or wellbore in a producing well [1 in 10,000].
# 15	Frack intersects an abandoned wellbore [1 in 500,000].
# 16	Frack to surface through the rock strata (well less than 2000 feet deep) [1 in 200,000].
# 17	Frack to surface through the rock strata (well greater than 2000 feet deep) [no cases].
# 18	'Felt' earthquake resulting from hydraulic fracturing [no cases in US].
# 19	Frack changes output of a natural seep at surface [1 in 1 million].
# 20	Emissions of methane, CO ₂ , NO _x SO _x [high frequency].

Adapted and tabulated from information in King, 2012.

Review of unconventional gas literature

- Funded by Department of State Development
- Global review of literature
 - Emphasis on what's relevant to Australia

- Five topics:
 - Groundwater contamination
 - Surface water contamination
 - Subsidence
 - Aquifer drawdown
 - Seismicity

For each topic:

- Pathways
- Observational evidence
 - ie surface spills recorded, methane detection
- Theoretical models
 - typically box models with assumptions made
- Analytical solutions
 - lacking in the literature

Contamination pathways, ie for groundwater:

Source: Wang et al. (Renewable and Sustainable Energy Reviews,

Observational:

 "The Pennsylvania Department of **Environmental Protection found 52** separate cases of methane migration in a five-year period ending in 2009. There are approximately 71,000 active gas wells in Pennsylvania. This corresponds to a $1.5 \times$ 10⁻⁵ (1 in 7,000) chance of a well leaking each year. Assuming a short 10-year well lifespan, the lifetime well leak risk is 1 in 700."

Theoretical models:

Fig. 4

Illustrative representation of the conservative assumptions made in Scenario 1 (shown here for the Münsterland Basin as an example)

Source: Kissinger et al., 2013. Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2: Modelling the transport of fracturing fluids, brine and methane, Environmental Earth Sciences

Analytical analysis:

NATIONAL CENTRE FOR GROUNDWATER RESEARCH AND TRAINING

Stay tuned!

Full report by the end of the year...