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Conceptual Uncertainty
In Groundwater Models

Hugh Middlemis hugh@HvdroGeologic.com.au +61 438 983 005  [(NgeleeraceIlerate



mailto:hugh@Hydrogeologic.com.au

Models cannot provide certainty

m Decision makers are eager for certainty
m Models/Modellers cannot provide certainty

m Models affected by uncertainties in terms of:
s Conceptualisation (Structural Uncertainty)
= Parameterisation
s Calibration
= Prediction




Groundwater Model Uncertainty

m Structural /7 Conceptual Model:
= physical framework, plus
= hydrological processes & water balance.

s Simplify complex reality -= Uncertainty

= structural uncertainty Is a known-unknown:

= we know we don’t know everything about the aquifer
system (we know we need more data)

= structural uncertainty Is an unknown-unknown:

= how much and what type of data do we need to adequately
characterise the system?

= When do we have enough data?




Structural Error/Uncertainty

= Ye et al, Groundwater, 48/5 (716-28), 2010
= Death Valley regional flow system (inc. Yucca Mtn)
m (5 X RCH) & (6 x Geology) = 25 plausible models
= methods: Monte Carlo & model averaging

m Structural error has major effect on predictive
uncertainty (more than parametric & recharge uncertainty)

= most calibration obs. do not help resolve alternates
(because weighted residuals varied little between models)

m 2016 paper focus on inter-basin flow (yet more multi-models)
m Evaluate structural uncertainty via multiple

model conceptualisations/parameterisations

= also helps with communicating the effects

s Can/Do we Investigate multi-models in practice?

4 hydrogeologic



Figure A1 - Transient Model Recharge Zones

McLaren Vale:
2 RCH models
(2006)

= High & Low Recharge
m [wo K distributions
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each model to
Identify envelope of
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Case Study: West GAB — Initially 2 models

Combinations of hydrogeology and
Witiam Cresk geochemistry data and concepts;
data quallty ISsues affect initial studies
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W e S t e r I I Project water supply wellfield — — Davenport Range

— Salt pans (evaporative discharge areas)

G A B (f i n a I ) Prominent Hill Mine — Billa Kalina fault system

Project

— GAB springs driven by artesian
Eromanga Basin aquifers

[Saline lake systems

Subseqguent
Investigations
Identified

conceptualisationg

as combination
of both initial
models. -
Used for mining L

Artesian Eromanga —
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to 2 O O 9 + ?) . Sub-artesian (confined) — — Diffuse upwards vertical leakage
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Groundwater in non-artesian —
Eromanga aquifer discharges
as diffuse seepage to salt pans
and creek lines



Tasmanian SY project (2009)

Wesley Vale Catchment
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TasSY — Recharge Comparison

(a) DPIPWE Modflow model
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TasSY — model calibration

(g) Lloyd's 8
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TasSY — model predictions

Despite data/model/climate/demand uncertainties, an adaptive water
resource mgt objective of further irrig & forestry development is achievable

Scenario A: historical
Awet climate proieciion
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Scenario D: future climate
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Model Uncertainty Cascade
= Future Projections: n-E

= GW pumping v.uncertain
= Aallocation / Ademand / Ause
= e-flows, other mgt initiatives

Climate Variability/Change
Aemissions -> RCPs/GCMs
Atemp -> Arainfall and AET
Arunoff; Astream flow/level
Arecharge

gw model at end of cascade
(but what about feedbacks?)

m Do we really want to have groundwater
models as the last drop Iin the
uncertainty cascade?
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Models cannot provide certainty
s Acknowledge that we cannot predict future
events with certainty:
= all predictions will be wrong in some way
= actual future climate, recharge, pumping, etc. will
differ from scenario assumptions
= Consider alternative approach, paraphrasing
John Doherty: models can’t determine
(exactly) what will happen but can
demonstrate what outcomes won’t/can’t
happen (&/or probabilities of such outcomes)

= showing what can’t/won’t happen can provide as
much insight as the traditional guideline workflow

= Modelling Guidelines allow other approaches as
best practice and encourage innovation in
modelling techniqgues (provided they are justified)
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Models can show what 1s not uncertain

m Biggest uncertainty Is conceptual/structural

m 2012 Guideline “model confidence level
classification” is not the best starting point

= [raditional workflow is not always the best
(conceptualise, build, calibrate, predict); better to....

m Devise model aims/methods/approaches to

address the “risk guestion” (ISO 31000:2009):
= what Is effect of uncertainty on project objectives?

m Use model to show what i1s not uncertain (show
what has a very low probability of occurrence or a
conseguence that is not material to objectives)

m Use model to guide data program to reduce
residual uncertainties

14 hydrogeologic



	Conceptual Uncertainty �in Groundwater Models
	Models cannot provide certainty
	Groundwater Model Uncertainty
	Structural Error/Uncertainty
	McLaren Vale:   2 RCH models (2006)
	Case Study: West GAB – initially 2 models
	Western GAB (final)
	Tasmanian SY project (2009)
	TasSY – Recharge Comparison
	TasSY – model calibration
	TasSY – model predictions
	Model Uncertainty Cascade
	Models cannot provide certainty
	Models can show what is not uncertain

