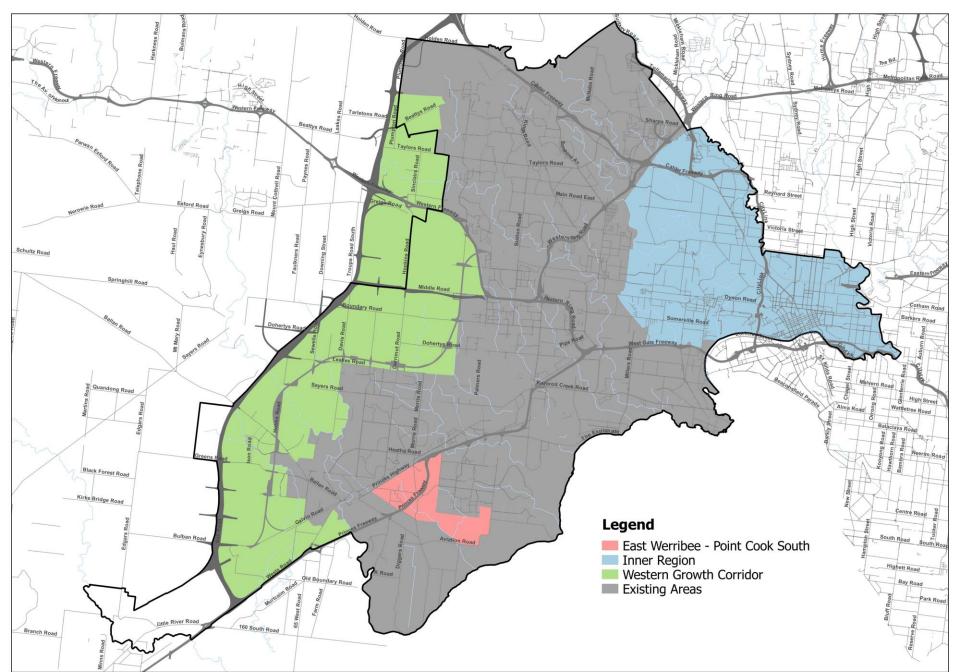
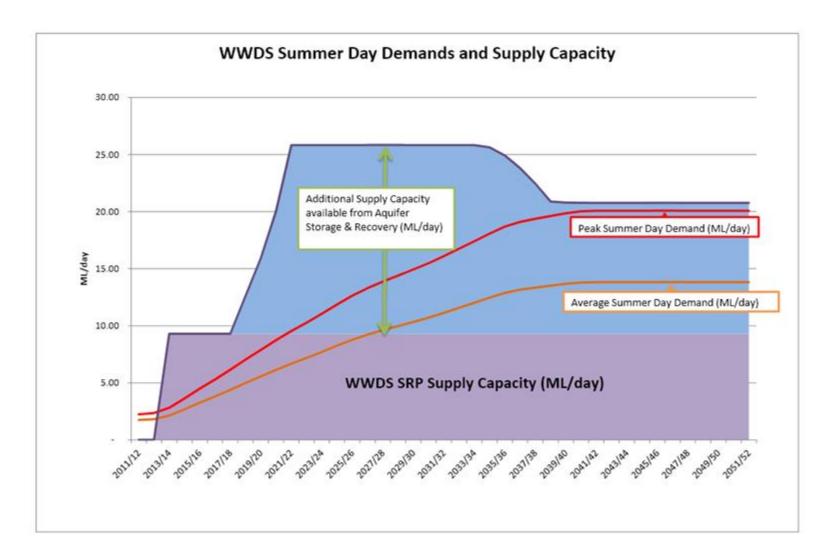
West Werribee Aquifer Storage and Recovery Scheme

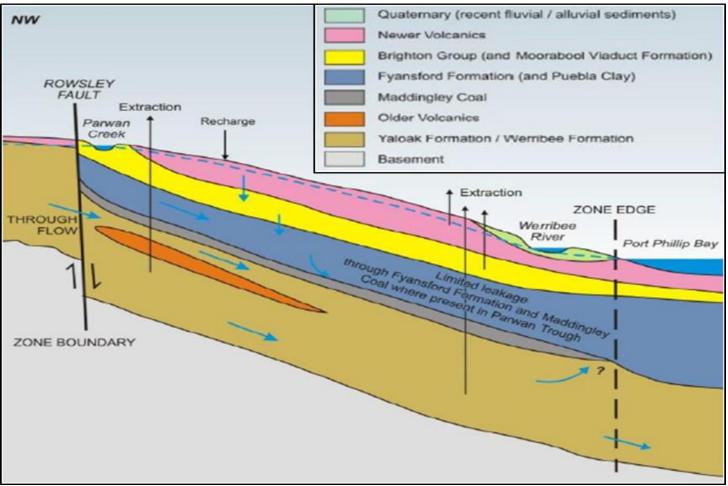
Matt Hudson, Javier Osma, Jeanne Drouet

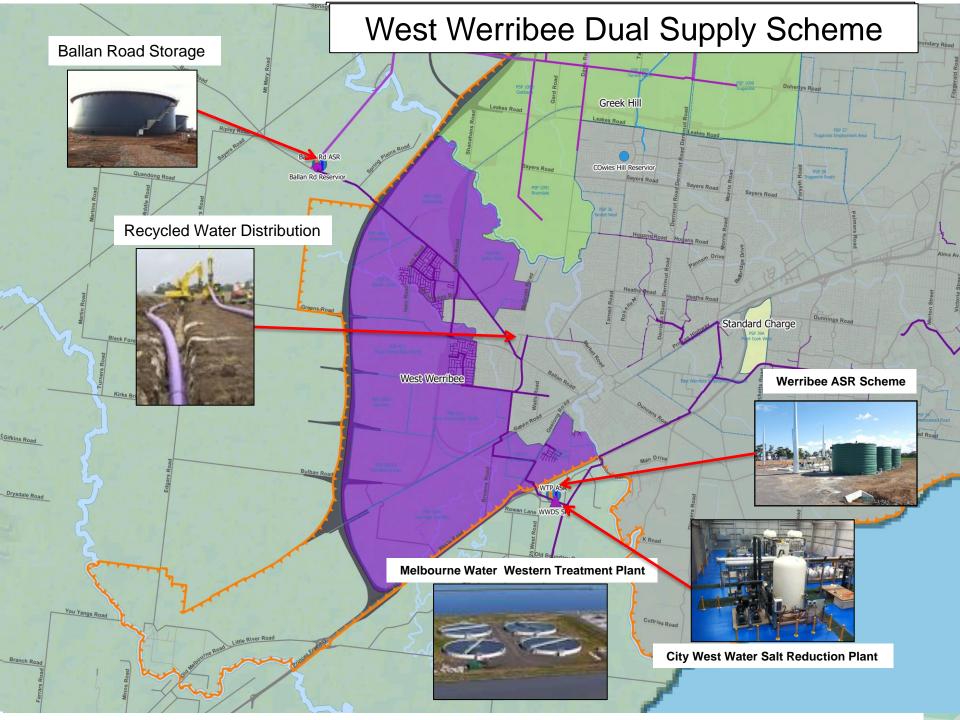
1st November 2017




Presentation content

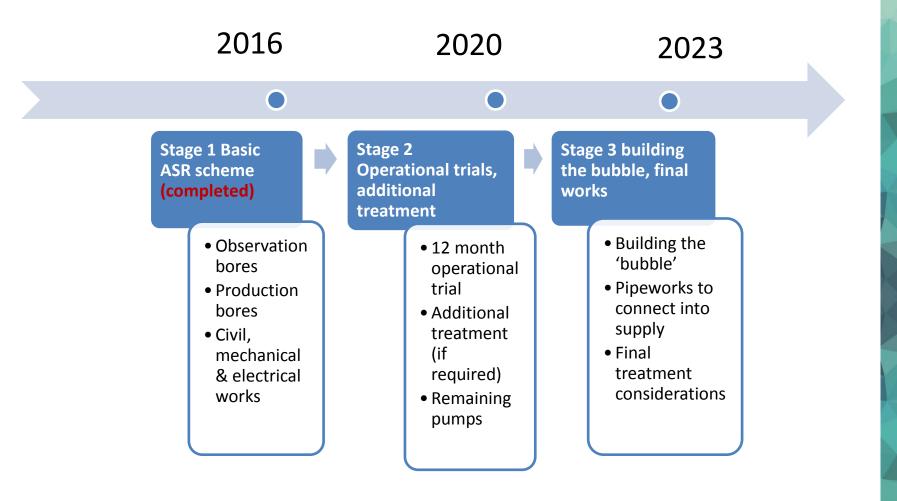
- Background and current status
- Water quality
- Pressure
- Clogging
- The future


City West Water Servicing Strategy Areas



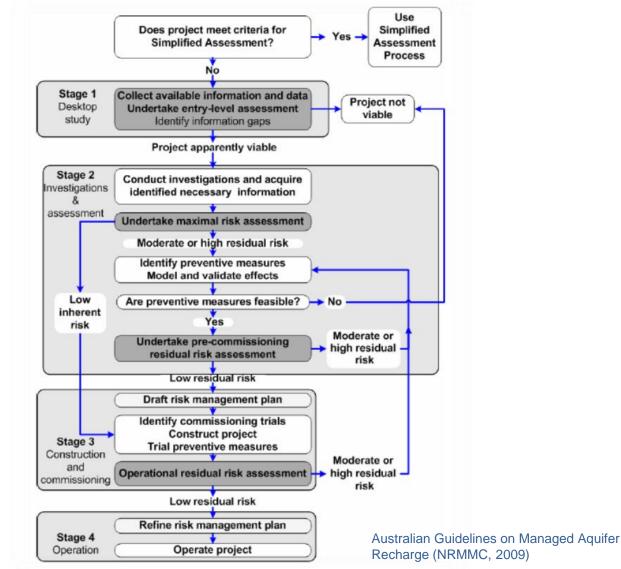
Geology

Generalised geological sequence showing Werribee Formation (GHD, 2012)

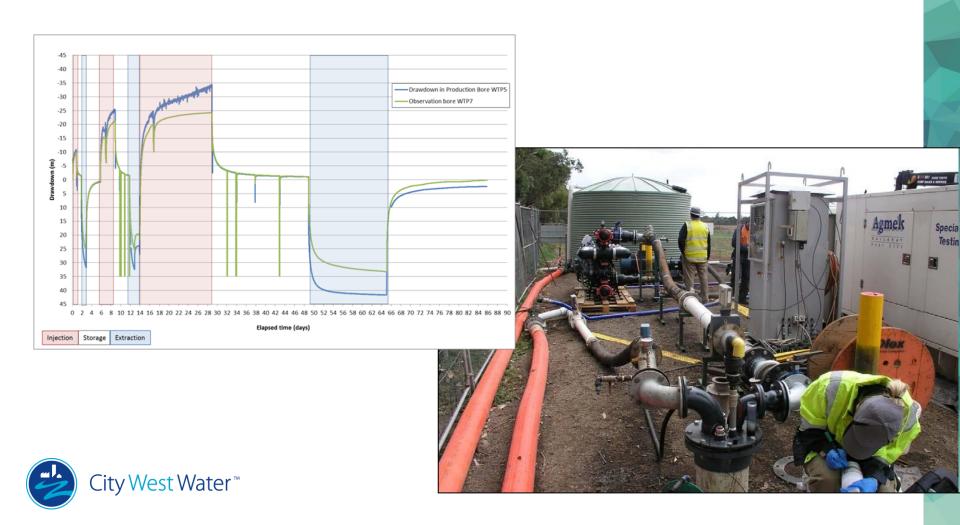


Financial

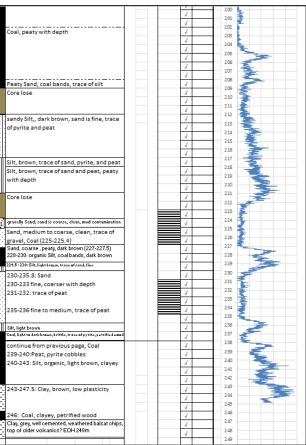
- Approval \$15.6M for 3 stages
- \$11.4M funded from Federal Department of Agriculture and Water Resources
- Part of National Urban Water and Desalination Plan
- Fund closed April 2016
- Expenditure to date is \$12.8M. Scheme costs expected to be up to \$15.6M depending on treatment requirements



Werribee ASR Scheme - Staging


City West Water™

Staged, Risk Based Development Program



Stage 2 Injection Trial at Salt Reduction Plant (SKM) 2012/13

Drilling

Why do we need an operational trial ?

Clogging

- to understand bore clogging
- can it be managed operationally ?
- is additional treatment required?

Chemistry

- how will chemistry in the aquifer change over time?
- is additional treatment required?

Operation

- what are the optimal rates, volumes and duration of injection/extraction ?
- what initial 'buffer' volume is required ?
- how do we optimise the salinity of the recovered water ?

City West Water™

Trial Program

West Werribee ASR Operational Trial 2017/2018 (Program as of 20 June 2017)

			Jul 17	'Aug 17	Sept 17	Oct 17	Nov 17	Dec 1 Jan 18 Fe	b 18 Mar 18	Apr 18	May 18	Jun 18	July 18
Activity	Total days	Flow Rate (I/s)											
			Baseline	1 Cycle 2	S	/cle 3							
Baseline testing	7	up tp 30 l/s											
1 Day Inject+ 3 day Store + 1 day extract	5	15											
Rest period and assess results	2												
7 day Injection	7	15											
21 day storage	21												
7 day extraction	7	15											
Rest period and assess results	21	}			н	old Point							
Hold Point/decision	14												
90 day Injection	90	20											
90 day storage	90												
60 day extraction (max)	30	20											
Assess results	60												

Water quality monitoring program

Water Quality Monitoring Objectives

Changes in water quality:

- Geochemical reactions between the source water, ambient groundwater and the aquifer matrix
- Changes in salinity, nutrients, inorganic compounds
- Levels of H2S
- Indicators of clogging
- Radioactivity

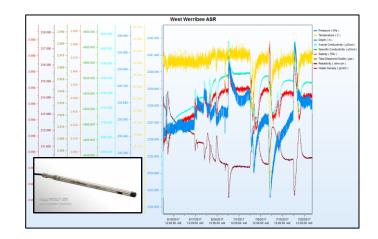
Source Water/Injectant

ASR Bore

Sampling Locations

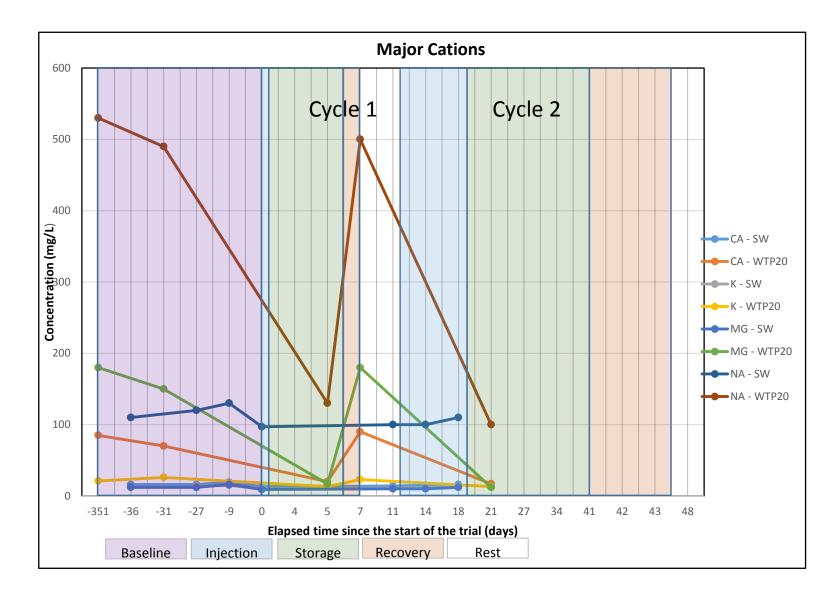
Monitoring Bores

Private Bore


Monitoring Plan

List of parameters monitored during the ASR trial

Analytes	Parameters	Primary Purpose
General Chemistry	pH, Conductivity, Turbidity, Total Suspended Solids, TDS, SDI	Evaluation recovery efficiency, calibration solute transport, clogging potential
Nutrients	Ammonia, Ammonium, Nitrate, Nitrite, Total Nitrogen, TKN, Total Phosphate, TOC, DOC, Silica, UV-transmission, COD, BCOD	Assessment of clogging potential, Geochemical imput
Algae	Total Count with Biovolume	Assessment of clogging potential, Geochemical imput
lons	Major Anions, Cations,	
Metals and Major Cations	Dissolved and Total Metals (Aluminium, Antimony, Arsenic, Barium, Beryillium, Boron, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Lithium, Manganese, Mercury, Molybdenum, Nickel, Selenium, Silver, Strontium, Thorium, Tin, Uranium, Vanadium, Zinc)	Metal reactions, Geochemical modelling Imput
Microbiological and bacteria	E. Coli, HPC Total Coliform, SRB, IRB, NGS	Quality check of components of Class A water, to detrmine residual levels and attenuation rates
Radioactivity	Gross alpha & beta (with Potassium 40 correction),Radium 226 and Radium 228, Natural Radionuclides by HR gammaspectrometry (Th-234, Th-230, Ra-226, Pb-210, U-235, Pa-231, Ac-227, Th-227, Ra-223, Ra-228, Th-228, K-40), Radon 222, Thorium 232, Uranium 238	Check on radionuclides in ambient, stored and recovered water
Gases	Un-ionised Hydrogen Sulphide (UHS),Dissolved Oxygen, Carbon Dioxide, Methane	H2S impact assessment, Geochemical Modelling
ТНМ	Chloroform, Dibromochloromethane, Bromodichloromethane, Total chlorine residual, Bromoform, Dichloromethane, Carbon tetrachloride	Disinfection by-products
HCAA	Chloroacetic acid, Dichloroacetic acid, Trichloroacetic acid,	
Emerging Pollutants	PPCPs, PFAS, DBPs	



Water Quality Results

- Preliminary results obtained from cycle 1& 2
- Lag of several weeks for lab analysis to become available
- Potable Class A source water: stable, SS above theoretical limit 0.1mg/L
- Extension of the plume did not reach the outer bores
- No water quality trigger levels have been crossed so far

Average values

Parameter	Units	Trial Source Water	Ambient Groundwater
Total dissolved solids (TDS)	mg/l	440	3,000
Turbidity	NTU	0-15	0-5
Nitrate	mg/l	26	0
Phosphorus	mg/l	10	0.1
DOC	mg/l	10	1
BDOC	mg/l	2.2	1.2
Ammonium	mg/l	0.01	0.8
pH		6.9	6.5
Temperature	°C	17	25
Oxidation Reduction potential	E _H Volt	+0.1	-0.3
Dissolved oxygen	mg/l	8.7	0
Total Iron	mg/l	0.1	2.0
Total Managanese	mg/l	0	0.1
Arsenic	mg/l	0.001	0.002

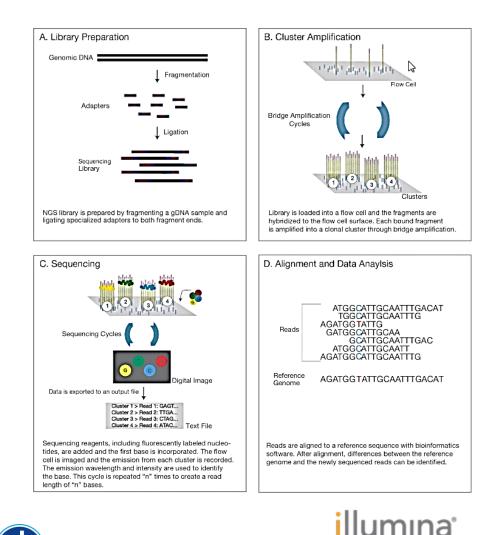
West Werribee ASR Water Quality Trigger Parameters and Values (Cont)

Trigger Levels

Parameter (mg/L unless stated)	Injection water (salt reduced Class A) 90th %ile	Guideline values - Primary Contact Recreation	Guideline values - Stock Watering	Guideline values - Aquaculture	Proposed Trigger value	Ambiant Groundwater - West Werribee (MAX recorded)	Comment	
Sodium Adsorption Ratio SAR (units)	6.8	-	-	-	-	-	no trigger value proposed	
Nutrients								
Ammonia	0.42	10	-	100	10	0.95		
Nitrite	-	1	30	100	1	<0.01	Recreation values used	
Nitrate	9.8	10	400	100000	10	0.03		
Organic nitrogen	-	-	-	-	-	<0.1	no trigger value proposed	
Total Kjeldahl Nitrogen	-	-	-	-	-	2	no trigger value proposed	
Total phosphorus	5.52	-	-	-	-	0.15	no trigger value proposed	
Total Organic Carbon	-	-	-	-	-	2	no trigger value proposed	
Assimilable Organic Carbon	-	-	-	-	-	1.2	no trigger value proposed	
Biodegradable dissolved organic carbon					-	0.02	no trigger value proposed	
Organic chemicals								
Benzene	-	10	-	-	10	not detected		
Benzo(a)pyrene	-	0.01	-	-	0.01	not detected	Recreation values used	
Carbon tetrachloride	-	3	-	-	3	not detected	-	
1,1-Dichloroethene	-	0.3	-	-	0.3	not detected		
1,2-Dichloroethane	-	10		-	10	not detected	4	
Pentachlorophenol	-	10	-	-	10	not detected	Recreation values used	
Polychlorinated biphenyls	-	0.1	-	2	0.1	not detected	Recreation values used	
Tetrachloroethene	-	10	-	-	10	not detected	1	
2,3,4,6- Tetrachlorophenol	-	1	-	-	1	not detected		
Trichloroethene	-	30	-	-	30	not detected		
2,4,5- Trichlorophenol	-	1	-	-	1	not detected	Recreation values used	
2,4,6- Trichlorophenol	-	10	-	-	10	not detected		
Turbidity and particu	lates							
Total suspended solids	3.2	-	-	75	-	16	no trigger value proposed, this will be heavilly influenced by sampling method and bore condition	
Algae - Microcystis (cells/mL)	-	-	11500	-	11500	-	stock value used	
Radionuclides								
Gross alpha (Bq/L)	-	0.1	0.5	-	0.6	0.47	Ambient groundwater exceeds guideline values. Radionuclides not detected in Injection water. NOTE: Drinking water guideline value is a dose of 1m Svlyear. A worst case' ingestion volume for recycled water is 2L/yr (Based o the recycled water (QMRA). The dose from this volume would be	
Gross beta (Bq/L)	-	0.1	0.5	-	0.7	0.58	0.001mSv/year. To obtain a dose of 10m mis would be of 1800 would need to be consumed or the radionuclide concentrations would need to be 500Bq/L. The trigger for gross alpha and gross beta is based on ambient values + 0.1 Bq/L.	
Aquifer dissolution								

Emerging Contaminants

OMPs are to known to have low concentrations in recycled water


CWW is testing a broad range of Emerging Contaminants/Organic Micropollutants:

- Pharmaceutical, Hormones, and Personal Care Products (PPCPs)
- Per-and Poly-Fluoroalkyl PFAS
- 1,4-Dioxane^{New}
- DBPDs

Next Generation Sequencing- NGS

City West Water™

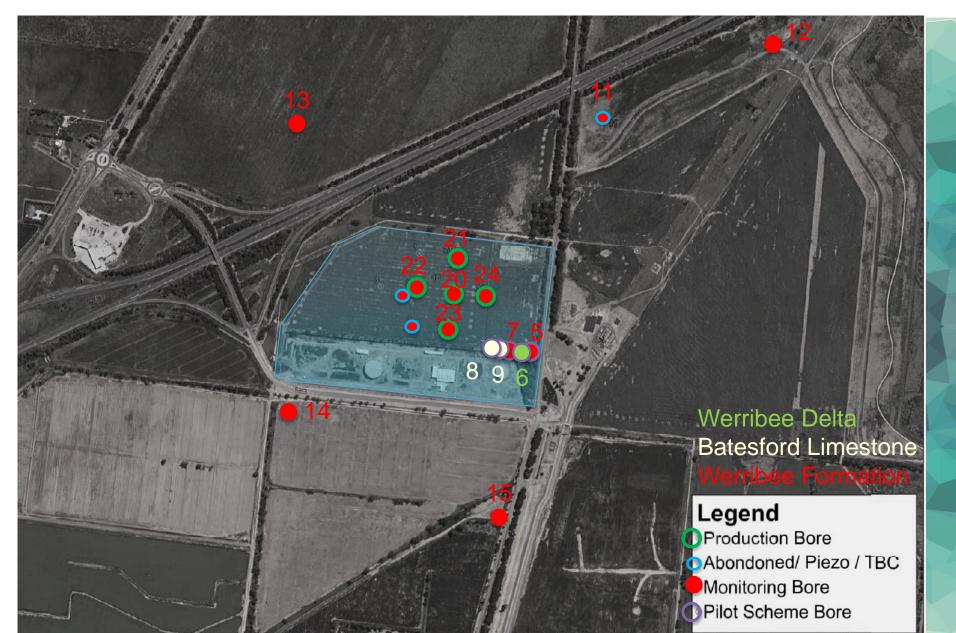
NGS techniques can be used to understand microbial composition of a water sample

DNA sequencing technology has been instrumental in the sequencing of complete DNA sequences or genomes of numerous types and species of life, including microbial species in ambient groundwater and other sources

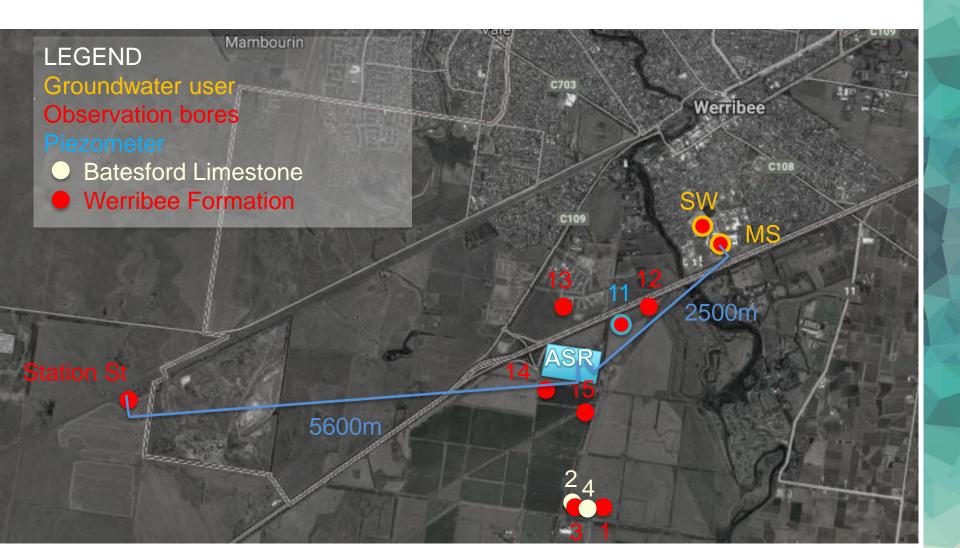
		Тс	otal	5283651.16S	5288151.16S
Legend Taxonomy		count	%	%	%
Unassigned;Other; <u>Other</u>		0	1.4%	1.4%	1.4%
k_Archaea;p_Crenarchaeota;c_MCG		0	0.0%	0.0%	0.1%
k_Archaea;p_Euryarchaeota;c_Methanobacte	ria	0	0.0%	0.0%	0.0%
k_Archaea;p_Euryarchaeota;c_Methanomicro	<u>bia</u>	0	0.0%	0.0%	0.1%
k_Archaea;p_[Parvarchaeota];c_[Parvarchaea]	0	0.0%	0.0%	0.1%
k_Bacteria;Other; <u>Other</u>		0	0.1%	0.0%	0.2%
k_Bacteria;p_;c_		0	0.4%	0.0%	0.7%
k_Bacteria;p_Acidobacteria;c_Acidobacteria	<u>6</u>	0	0.0%	0.0%	0.0%
k_Bacteria;p_Acidobacteria;c_Holophagae		0	0.2%	0.0%	0.5%
k_Bacteria;p_Acidobacteria;c_Solibacteres		0	0.9%	1.8%	0.0%
k_Bacteria;p_Acidobacteria;c_[Chloracidoba	cteria]	0	0.0%	0.0%	0.0%
k_Bacteria;p_Actinobacteria;c_Acidimicrobii	<u>a</u>	0	0.0%	0.0%	0.0%
k_Bacteria;p_Actinobacteria;c_Actinobacteri	<u>a</u>	0	1.3%	2.6%	0.0%
k_Bacteria;p_Actinobacteria;c_Thermoleoph	lia	0	0.0%	0.0%	0.0%
k_Bacteria;p_BRC1;c_PRR-11		0	0.1%	0.2%	0.0%
k_Bacteria;p_Bacteroidetes;c_Bacteroidia		0	3.3%	0.0%	6.6%
k_Bacteria;p_Bacteroidetes;c_Cytophagia		0	0.2%	0.3%	0.0%
k_Bacteria;p_Bacteroidetes;c_Flavobacteriia		0	1.8%	3.5%	0.0%
k_Bacteria;p_Bacteroidetes;c_[Saprospirae]		0	0.2%	0.4%	0.0%
k_Bacteria;p_Chlorobi; <u>c</u> _		0	0.1%	0.0%	0.1%

- Taxonomic composition of bacteria and description of microbial communities
- Differences between
 various groundwater types
- Microbial population description during different stages of the trial
- Identification of microorganisms for clogging evaluation
- Efficacy of disinfection, shock chlorination
- Comparison of different methodologies i.e. Lumin test

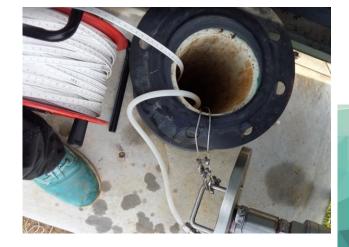
Aquifer/bore pressure monitoring program



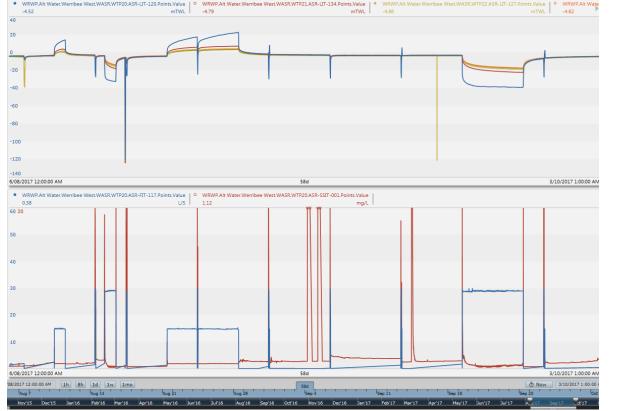
Pressure Monitoring Objectives


- Aquifer parameters, gradients
- Performance of the bores
- Monitor impacts on groundwater users and environmental impacts

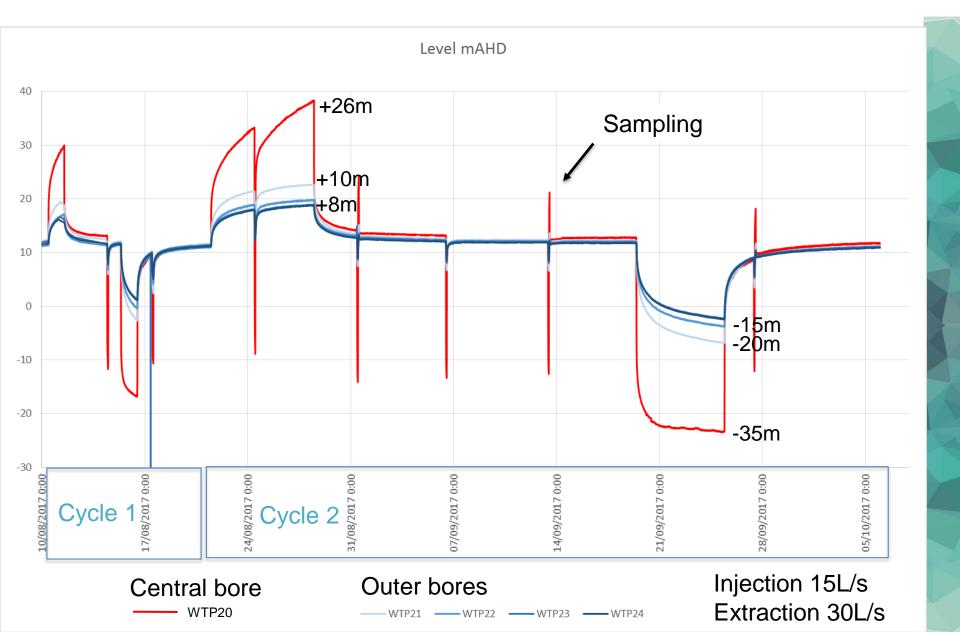
Water pressure monitoring network

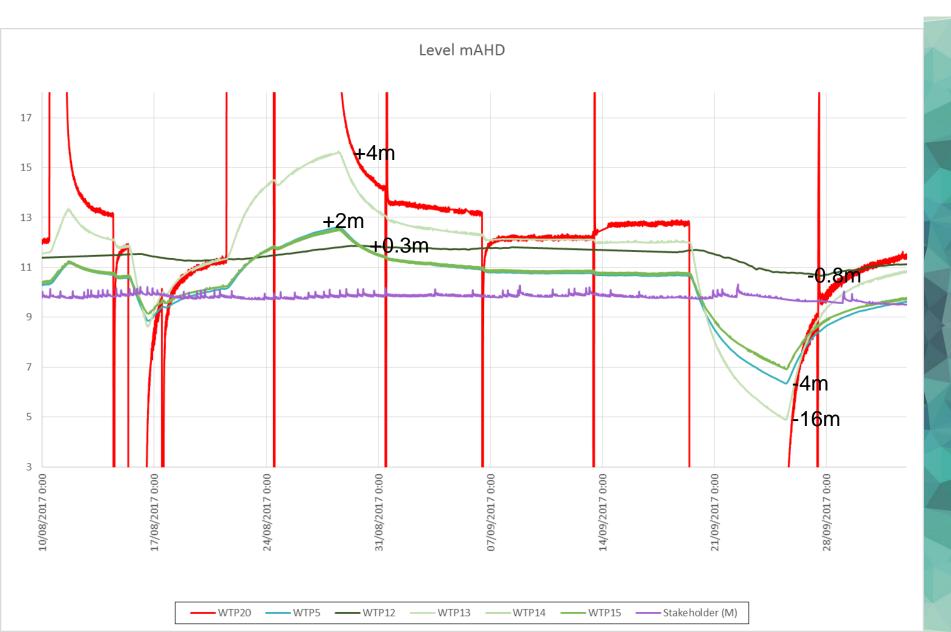

Water pressure monitoring network

Data collection methods


WRWP Alt Water Werribee West WASR WTP21 ASR-I IT-134 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water Werribee West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water West WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt WASR WTP22 ASR-I IT-127 Points Value | • WRWP Alt Water WasR WTP22 ASR-I IT-127 Points Value | • WRWP Alt WASR WTP22 ASR-I IT-127 Points Value | • WRWP ALT WASR WTP22 ASR-I IT-127 Points WTP22 ASR-I IT-127 Points VARR WTP22 ASR-I IT-127 Points WTP22 ASR

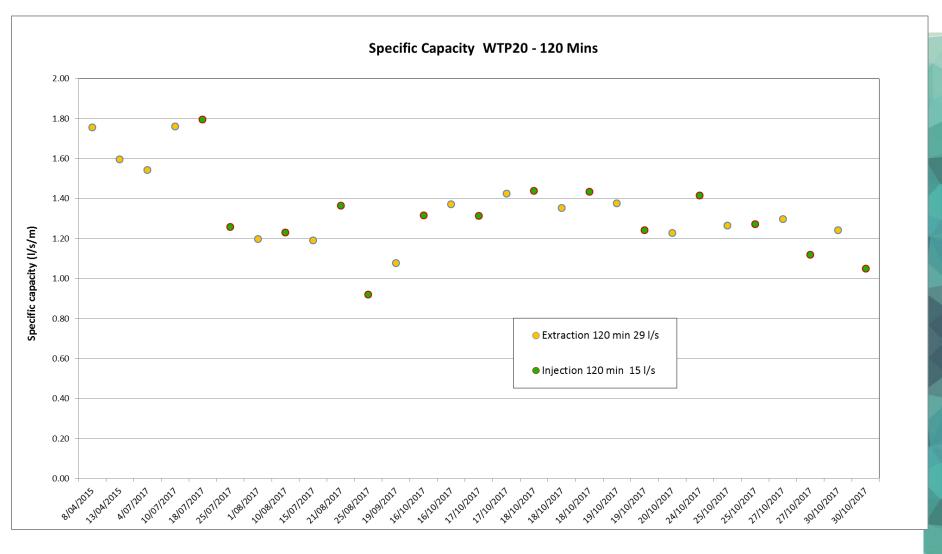
- Manual dipping
- Level loggers
- Multi-parameter probes •
- Pressure gauges
- Telemetry •



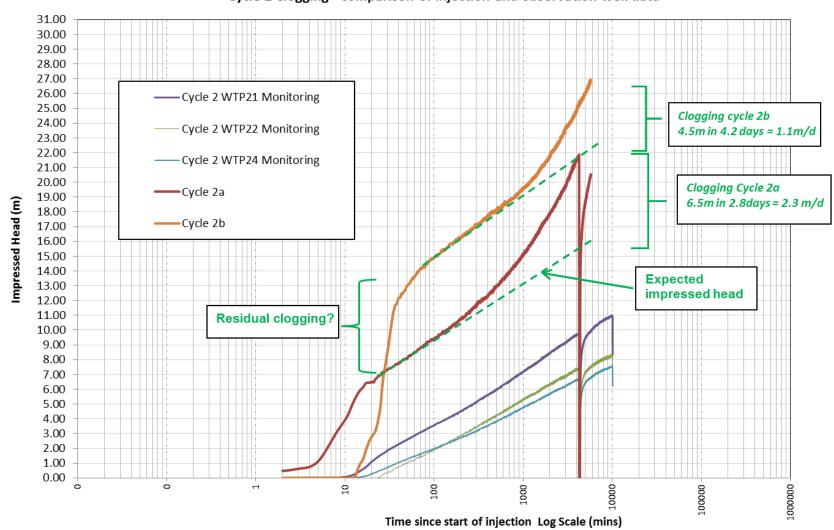


	Bore ID	Aquifer	Potential Hazard	*Trigger level	
Trigger levels	MS-1	Werribee Formation	Extra drawdown or artesian conditions at licensed bores.	2m below lowest background level on record	
	WTP11		Extra drawdown or artesian conditions at	2m above the	
Agreed with stakeholders Early warning signs of changes	WTP12	Formation		highest background level on record	
Limit drawdown impact on GWU Communication with stakeholders	WTP20	Werribee Formation	Excessive impressed head which could fracture the formation	Impressed head limit of 100m above ground level	
	WTP6	Werribee Delta	Pressure and/or water quality impacts on overlying aquifers and the environment	minimum	
	WTP9	Batesford Limestone	Impacts on overlying aquifers and the environment	2m above highest background level on record (impressed head)	
	PZ01	Fyansford Formation	Impacts on overlying aquifers and the environment		
	PZ02	Brighton Group	Impacts on overlying aquifers and the environment		
City West Water™	77033	Werribee Formation	Artesian conditions leading to groundwater dicharge	2m above highest background level on record (impressed head)	

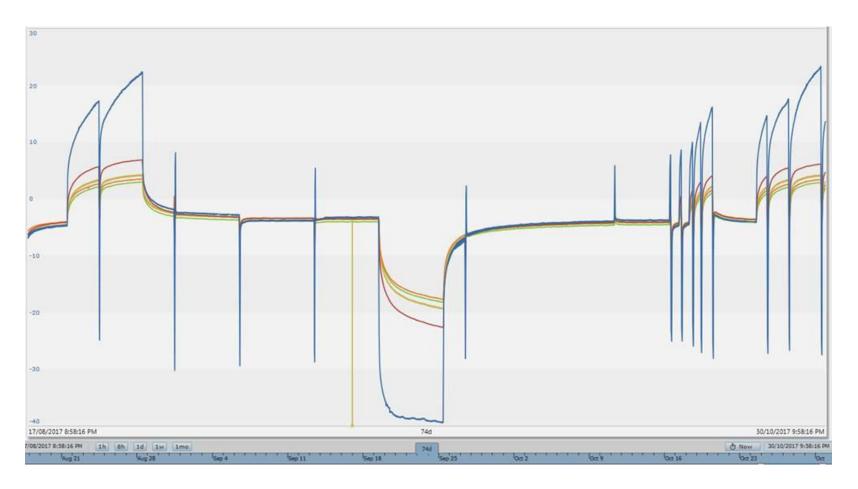
Pressure Monitoring – production bores



Pressure Monitoring



Clogging



Cycle 2 Clogging - comparison of injection and observation well data

Cycle 2 and 3 – current status

City West Water™

Conclusions

- ASR is an innovative water management technology which can provide a relatively low cost water storage to help meet future growth in the West. The technology is adaptable and can improve water resource and supply resilience.
- Results to date are positive, but some aspects need to be better quantified and managed
- Operational trialling will be key to quantifying key risk factors and determining any additional infrastructure requirements, and the optimal operating regime.

