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Applied Tracers

• Voluntarily introduced in groundwater
• Known quantity
• More controlled

Examples: Bromide, fluorescein

INTRODUCTION
D I F F E R E N C E S  B E T W E E N  A P P L I E D  A N D  E N V I R O N M E N TA L  T R A C E R S

Environmental Tracers

• Already present in groundwater
• Unknown quantity
• Less controlled

Examples: Temperature, major ions, 
contaminants, isotopes 
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INTRODUCTION
AT  W H AT  S C A L E  D O  Y O U  N E E D  T O  W O R K ?
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• Costs
• Site constraints
• Aquifer conditions
• Detection limits
• Laboratory or field analysis (Sampling method)
• Background concentrations
• Quality assurance/quality control (QA/QC)
• Likely spatial and temporal distribution

Begin with the end in mind!
Come up with hypotheses to design your data collection

INTRODUCTION
O T H E R  K E Y  C O N S I D E R AT I O N S
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APPLIED TRACERS
K E Y  P R I N C I P L E S

BASIC IDEA

• Dissolve a known quantity of tracer in water

• Introduce the solution into an aquifer via:
• Injection well
• Sinkhole, subsurface vault, pond, dam, etc.

• Monitor changes in tracer concentrations

Obtain breakthrough curves

IN PRACTICE

• Seems easy but tracer test methodology can be 
sophisticated

• Results can be highly dependent upon adopted 
methodology

S O U R C E :   B A T L L E ‐ A G U I L A R ,   2 0 0 9
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S A LT S  

• Analysis is conventional

• Higher detection limit               
(10 – 100 g/L)

• Background can be high

• Toxicity

F L U O R E S C E N T  D Y E S N A N O  T R A C E R S

APPLIED TRACERS

• Very low detection limit       
(0.001 g/L)

• Background, interferences

• Innocuous (USEPA, German 
EPA)

(Amino-G acid excited by UV)

• Analysis is unconventional

• Specificity

• Requires specific risk 
assessment
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T Y P I C A L  D E T E C T I O N  
L I M I T S

A N A LY S I S  T Y P E  - F L U O R E S C E I N

INSTRUMENTATION LIMITS FOR FLUORESCENT DYES

Fluorescent
tracer

Limit of 
detection
(g/L)

Fluorescein 0.002

Sulforhodamine B 0.006

Eosine 0.01

Tinopal 0.01

Amino G acid 0.02

Pyranine 0.02

Naphthionate 0.05

Photine 1
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• Many EU countries rely heavily on groundwater for their 
potable water supply

• Some areas are densely populated and there is a need 
to define protection zones inside which activities are 
regulated or prohibited

• When an accident occurs, there is also a need to predict 
contaminant migration and support logistics of 
intervention

• In most EU countries, protection zones are typically 
defined using fluorescent dye tracers due to their ability 
to quantify effective porosity

ݒ ൌ 	


PROTECTION ZONES
C O N T E X T

OPPOSITE TO GQRUZ
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• Alluvial gravel layer is about 7 m thick

• T ranges from 1.10-4 m2/s to 2.10-1 m2/s with average 
being 3.10-2 m2/s

• Average storage coefficient (Sy) is 0.10

PROTECTION ZONES
A P P L I C AT I O N S O U R C E :   D E R O U A N E A N D   D A S S A R G U E S ,   1 9 9 8
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PROTECTION ZONES
A P P L I C AT I O N  - R A D I A L LY  C O N V E R G I N G  F L O W S O U R C E :   D E R O U A N E A N D   D A S S A R G U E S ,   1 9 9 8

Distance 
(m)

Tracer Effective
Porosity

ne (%)

27 KI 4.8

49 KI 7.2

78 Naphthionate 5.6

88 LiCl 8.2

91 Fluorescein 5.8

115 Rhodamine WT 4.7
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• Effective porosity is lower than the Specific Yield (Sy) up 
to a factor of two

• Transfer time can be underestimated if relying on Sy
derived from pumping test

• The distribution in effective porosity is variable, reflecting 
the aquifer heterogeneities

• Lower effective porosities reflect that contamination will 
follow the “path of least resistance” (i.e. via advective
zones) while Sy is more a bulk parameter

• This is even more pronounced in fractured rock aquifers. 
For example, effective porosities as low as 0.03 % have 
been measured in limestone.

PROTECTION ZONES
O U T C O M E S

S O U R C E   :   S U T H E R S A N ,   2 0 1 6

3 D   D E P I C T I O N   O F   A L L U V I A L   A Q U I F E R



17

• Limestone is a dual porosity medium (fracture and 
matrix) that is used extensively as an aquifer for potable 
water supply in the UK and Northwest EU

• A key factor of vulnerability is migration of nitrogen and 
pesticides resulting from agricultural activities through 
the unsaturated zone

• There is a need to better predict the recharge 
mechanisms and integrate these into the vulnerability

UNSATURATED ZONE
C O N T E X T
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UNSATURATED ZONE
A P P L I C AT I O N S O U R C E :   B R O U Y E R E ,   2 0 0 4
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A P P L I C AT I O N S O U R C E :   B R O U Y E R E ,   2 0 0 4
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LIMESTONE MATRIX

• High porosity: nm ~ 30 – 40 %

• Microporosity (~ 1 m)  very high capillary 
tension

• Low hydr. conductivity: Ks,M << 10-9 to 10-8 m/s

LIMESTONE FRACTURES

• Low porosity: nf < 1%

• Larger openings  lower capillary tension

• High hydr. conductivity: Ks,F >> 10-3 m/s

First test shows long tail in breakthrough curve, 
reflective of strong back diffusion of tracer into 
fractures 

UNSATURATED ZONE
O U T C O M E S S O U R C E :   B R O U Y E R E ,   2 0 0 4
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• Most decisions regarding contaminated 
groundwater are driven by contaminant 
concentrations.

• However, exceeding concentration criteria 
does not necessarily mean that the 
groundwater contamination poses an 
unacceptable risk

• Making decisions regarding contaminated 
groundwater can be improved by also 
considering the contaminant mass flux:

ܬ ൌ ܥ	݅	ܭ
ܳ ൌ ݅	ܭ

GROUNDWATER FLUX
C O N T E X T

S O U R C E   :   I T R C ,   2 0 1 0

S O U R C E :   I T R C ,   2 0 1 0
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GROUNDWATER FLUX
F I N I T E  V O L U M E  P O I N T  D I L U T I O N  M E T H O D

time

Q1
t

Q1
t< Q2

t

Monitoring during tracer injection Monitoring after tracer injection 

Dilution >> when Qt >>
Cinj

Cw

S O U R C E :   B R O U Y E R E ,   2 0 0 8
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• Groundwater flux measurement depends on: 
• Detection limit of tracer (0.01 g/L to         

1 g/L)
• Control on tracer injection and sampling 

flow rates (< 0.1 L/min)

Basis of accuracy

• Real-time measurement

GROUNDWATER FLUX
A P P L I C AT I O N  – F I N I T E  V O L U M E  P O I N T  D I L U T I O N  M E T H O D

Particularly 
suited to 
dynamic 
environments 
(e.g. tidal 
zones, 
discharge to 
surface water, 
active 
remediation)

S O U R C E :   T H I E L E ,   2 0 1 7

Groundwater 
level

River 
level

Darcy Flux
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CONCLUSION

• Another “toolbox” to test aquifers 
• Versatile - Nearly infinite number of approaches
• Importance of developing a hypothesis to be tested
• Design applied tracer test to verify this hypothesis
• Key design considerations include – Injection approach, tracer 

choice, tracer monitoring, QA/QC

A P P L I E D  T R A C E R S
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FUTURE DEVELOPMENT
“ S M A R T ”  A P P L I E D  T R A C E R SS O U R C E :   K N A P P ,   2 0 1 7
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BASIC IDEA

• Use parameters that are “freely” available in the 
environment

• Monitor spatial or temporal distribution of parameters

IN PRACTICE

• Can accommodate for large scale and slow groundwater 
movement

• Sampling and analysis can require stringent conditions 
(e.g. lab turnaround time for some tracer can be in the 
order of 3 to 6 months)

• Australia is a global leader in this!

ENVIRONMENTAL TRACERS
K E Y  P R I N C I P L E S
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F I E L D  PA R A M E T E R S ,  
M A J O R  I O N S ,  I S O T O P E S  

• Relatively low to moderate cost

• Typically used to assess mixing 
processes

C O M P O U N D  S P E C I F I C  
I S O P O T O P E  A N A LY S I S

A G E  D AT I N G  A N D  
R A D I O A C T I V E  T R A C E R

ENVIRONMENTAL TRACERS

• Moderate cost

• Typically used to assess 
degradation processes

• Moderate to high cost

• Connectivity and flowpaths

Background and QA/QC!!!



30

• Measuring the rate of 
groundwater discharge is 
key to aquatic ecology 
studies

• The groundwater – surface 
water interface is a 
dynamic zone with a 
number of mixing 
processes involved

• This interface is also 
subject to strong redox 
gradients, resulting in 
biological activity

GROUNDWATER DISCHARGE
C O N T E X T
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• Surface water is enriched in δ2H and         
δ18O due to evaporation

• Terrestrial groundwater is depleted in δ2H 
and δ18O

Mixing proportion can be estimated using 
mixing line between the two end members

• Seepage water (i.e. water actually 
discharging) is dominated by river water     
(~ 90 %)

 Indicates significant mixing before 
discharge in the river

GROUNDWATER DISCHARGE
H E AV Y  I S O T O P E  D ATA  I N  WAT E R S O U R C E :   D U R A N ,   2 0 1 2

Terrestrial 
Groundwater

Surface 
WaterSeepage 

Water
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• Contrast in isotopic signature between 
plant, groundwater, hyporheic zone and 
surface water

Enables an understanding of different 
contributors in nitrogen

• Enrichment in heavy isotope from the 
deep part to the shallow part of the 
hyporheic zone

 Indicates significant nitrogen removal rate 
(up to 80% removal) 

GROUNDWATER DISCHARGE
C O M P O U N D  S P E C I F I C  I S O T O P E  A N A LY S I S S O U R C E :   L A M O N T A G N E ,   2 0 1 8
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• Assessing contaminant degradation is key to risk 
assessment or remedial design

• Enhanced bioremediation is one of the most cost-
effective remediation techniques over other in-situ 
techniques (ISCO, thermal, surfactant)

• Sometimes monitored natural attenuation can be the 
most practical remediation option

• When organic contaminants degrade, there is an 
enrichment of heavy isotopes in the remaining 
contaminant pools (Environmental forensics)

• Compound specific isotope analysis can:
• Support an assessment of spatial and temporal 

trends in biodegradation
• Form a basis to derive degradation rates

CONTAMINANT DEGRADATION
C O N T E X T  – I S O T O P I C  F R A C T I O N AT I O N S O U R C E :   U S E P A ,   2 0 0 9
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CONTAMINANT DEGRADATION
S O U R C E :   P A L A U ,   2 0 1 51 , 1 , 1 - T C A  I N  F R A C T U R E D  L I M E S T O N E
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• Fractionation results for reduction and oxidation 
obtained via batch testing (laboratory) 

• Field data indicate that 1,1,1-TCA tends to degrade 
following abiotic reaction

• Abiotic degradation is slow and difficult to monitor 
using more conventional analysis

• Provides possible perspective on remedial 
approach:

• Enhanced biodegradation – limestone aquifer 
with long plume, amendment delivery and zone 
of influence

• Monitored natural attenuation – slow 
degradation rate

CONTAMINANT DEGRADATION
R E S U LT S  A N D  O U T C O M E S O U R C E :   P A L A U ,   2 0 1 5
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• Groundwater is “ageing” along the flowpath, with 
surface water being the youngest

• The following environmental tracers can be used to 
“date” groundwater:

• Noble gases (e.g. He)
• Natural radionuclides (e.g. radon-222)
• Radionuclides with both natural and 

anthropogenic sources (e.g. 3H) 
• Anthropogenic tracers (e.g. CFCs)

• Age dating can be used to evaluate:
• Connectivity with geological formations
• Aquitard leakage
• Aquifer recharge rates
• Groundwater – surface water interaction

GROUNDWATER RECHARGE
C O N T E X T S O U R C E :   S U C K O W ,   2 0 1 4

A groundwater sample never has a 
unique “Age” but an Age Distribution
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• 14C expressed in pmC (percent modern 
carbon)

Higher value indicative of younger 
groundwater

• 3H expressed in TU (tritium units)

Higher values indicative of younger 
groundwater

• 4He expressed in cm3 STP g-1 (standard 
temperature and pressure)

Higher values indicative of older 
groundwater

Losing stream, influenced by recent 
pumping activities

GROUNDWATER RECHARGE
G R O U N D WAT E R  – S U R FA C E  WAT E R  I N T E R A C T I O N S O U R C E :   L A M O N T A G N E ,   2 0 1 5
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CONCLUSION

• Toolbox is complementary to “Applied Tracers”
• Also versatile - Nearly infinite number of approaches
• Multiple lines of evidence
• Importance of involving practitioners for scoping, sample collection, 

laboratory analysis and data interpretation (Don’t try to replicate ten 
years worth of research)

E N V I R O N M E N TA L  T R A C E R S



39

FUTURE DEVELOPMENT
I N T E G R AT E D  L A B O R AT O R Y  A N D  R E S E A R C H  FA C I L I T Y  

• Increase accessibility to 34S analysis
Useful in geochemical analysis 

(MAR/ASR, acid mine drainage, etc)

• Development of noble gases analysis
Alternative to overcome anthropogenic 

influence in age dating assessment
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QUESTIONS?
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